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Abstract— Scene reconstruction builds a model of a real-
world scene using images of the scene. In active scene recon-
struction, usually a single robot moves a camera to different
points of view to reconstruct the scene in high quality. In con-
trast to single robot scene reconstruction, we plan where each
robot in a team should move to maximize scene reconstruction
quality. We formulate this next-best-view planning problem
as a centralized submodular optimization problem, leading to
performance guarantees for the approximate greedy policy. We
propose an approximation for the expected information gain
from a set of sensor poses that takes into account coordination
between the sensors, and apply the greedy policy to scene recon-
struction tasks with two robot arms. Initial experimental results
show that successful scene reconstruction can be achieved using
the proposed approach. We identify several directions for future
work that can be helpful to more precisely characterize the
benefits and limitations of our method.

I. INTRODUCTION

Scene reconstruction creates a digital model of a real-
world scene from images of the scene. Using scene re-
construction, a robot can create a model of its workspace
and the objects therein. Robotic applications requiring scene
reconstruction range from household tasks involving object
manipulation to industrial applications such as sorting waste.

To collect the images required for scene reconstruction,
a robot views the scene from multiple viewpoints. Planning
which views provide most information can increase scene
reconstruction efficiency by avoiding exhaustively visiting
all views. The problem of planning views to create high-
resolution scene reconstructions is known as the next-best
view (NBV) planning problem. To represent the scene to
be reconstructed, NBV planning approaches often employ a
volumetric [1] or surface based representation [2]. The next
possible views are scored based on the distance from the cur-
rent view, reachability, and overlap with previous views [3],
or various quantifications of volumetric information [4], [1].
The next best view selected is the one with the greatest score.

In this paper, we address centralized multi-robot NBV
planning, where a team of robots equipped with depth
cameras reconstruct a scene. As our solution is centralized,
it is applicable to problems where communication between
the team members is available, for example when the robots
work within a fixed work cell in close proximity. Fig. 1
shows an illustration of the task. We formulate a next-
best-view planning problem as a centralized submodular
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Fig. 1. Intel Realsense D435 depth cameras are attached to two KUKA
LBR iiwa robot arms on the left and right. The robots move to poses around
the table in the middle and record images of the items on the table. The
objective is to plan a sequence of poses from which to view the items
such that the quality of the resulting volumetric scene reconstruction is
maximized.

optimization problem, and obtain performance guarantees for
the approximate greedy policy. We propose an approximation
for the expected information gain from a set of sensor poses
that takes into account coordination between the sensors. We
then apply the greedy policy of maximizing the expected
information gain to scene reconstruction using two robot
arms, and show that the method successfully explores the
scene. We identify directions for future work and discuss
potential extensions.

The remainder of the paper is organized as follows.
In Section II, we review related work in NBV planning,
and multi-camera and multi-robot information gathering.
In Section III, we formulate centralized multi-sensor scene
reconstruction as a sensor selection problem and show that
the problem is submodular. In Section IV, we introduce
our proposed approximation for the information gain that
encourages coordination between sensors. We present initial
experimental results in Section V. Section VI concludes the
paper by discussing directions for future work.

II. RELATED WORK

The NBV planning problem is a type of active vision
problem [5], [6] where a camera is controlled to gather
information to solve a task. For a general survey of active
vision in robotic systems, see [7].

Single camera scene reconstruction. Delmerico et al. [1]
compare various quantifications of information gain in
a volumetric scene reconstruction task. They propose an
occlusion-aware quantification of information gain that con-
siders the visibility likelihood of voxels when planning next



views. The average entropy approach proposed in [4] selects
views that have the greatest sum of entropies in the voxels
potentially visible from that view. The area factor method
proposed in [8] selects views that contain both occupied vox-
els and voxels on the frontier between known and unknown
space. Robot control uncertainty is additionally considered
in [3]. In [9], the related problem of planning how a robot
should manipulate an object within the view of a stationary
camera to create a 3D model of the object is investigated.
The next pose to be selected is determined by maximizing
expected information gain. All of the aforementioned works
apply a volumetric scene representation. Recently, [2] pro-
posed an NBV planning method based on a surface density
representation that scales to large scenes of up to 40 meter
scale. Views are selected to maximize the expected observed
frontier volume. Other NBV planning applications using a
surface representation include, e.g., [10].

Most of the works referenced above solve the next best
view problem by a greedy strategy. The greedy strategy
selects the view with the greatest immediate expected utility,
without regard for utility over a longer horizon of time.
Advantages of planning over multiple decisions non-greedily
have been demonstrated, e.g., in active object detection [11],
robotic exploration [12], [13], object manipulation [14] and
search [15], and object classification in outdoor environ-
ments [16]. Information-theoretic exploration techniques can
also be useful over long time horizons in changing envi-
ronments [17]. However, in information gain maximization
tasks with a submodular objective function, the greedy policy
provides a good approximation to an optimal solution [18].
We use submodularity of our problem to justify the use of
an approximate greedy policy.

Multi-camera scene reconstruction. Planning and con-
trol in multi-camera systems mainly concentrates on the two
tasks of camera network design and control. The design task
involves planning the placement of stationary cameras, for
example for maximum coverage [19] or best 3D reconstruc-
tion performance [20]. The control task is mainly concerned
with control for best possible area coverage in surveillance
and security applications, see [21] for a survey. A generic
method for online control of a camera network for a variety
of computer vision tasks via policy search combined with
heuristics is proposed in [22], but no quantitative evaluation
of scene reconstruction is provided.

The problem of multi-robot information gathering is
closely related to multi-camera control. Various decision-
theoretic approaches to find decentralized solutions to multi-
robot active information gathering problems have been pro-
posed [23], [24], [25], [26]. However, finding such decen-
tralized policies is computationally intensive.

Unlike the scene reconstruction methods reviewed above,
we address multi-sensor scene reconstruction, where a team
of robots or sensors co-operates to find the reconstruction.
We target a team of robots that work in close proximity
and connected via a low-latency network to each other, e.g.,
robots sorting waste along a processing line. Our approach
is similar to [27] who consider the multi-robot setting, but

differs as we do not consider specific regions of interest, but
aim to obtain an overall coverage of the entire scene. Further,
planning in [27] is decentralized, whereas we consider the
centralized case where the robots in the team share their
observations.

III. MULTI-SENSOR ACTIVE VOLUMETRIC
RECONSTRUCTION

In this section, we formulate the problem of active vol-
umetric reconstruction as a sensor selection problem. We
show that our optimization problem is submodular, which
leads to performance guarantees on the approximate solution
by a greedy policy. Finally, we present an approximation
of information gain that takes into account coordination
between the sensors.

Notation. Random variables and sets are denoted by
uppercase letters such as X . Lowercase letters, e.g., x, denote
variables and realizations of random variables. A sequence
of t objects is written x1:t, and tuples of n objects as (xi)ni=1.

A. Problem formulation

Consider a team of n ≥ 1 sensors or robots as shown
in Fig. 1. The robots construct a volumetric reconstruction
of their workspace, in Fig. 1 the tabletop, by sequentially
selecting sensor poses from which to capture depth images.
The depth images captured by the sensors are combined
into a single joint reconstruction that describes the scene
geometry. Each pose of sensor i = 1, 2, . . . , n can be chosen
from the set Si. We denote the set of possible sensor poses
for all sensors obtained as a Cartesian product S = ×ni=1Si.
As we target applications with robotic manipulators with
high pose accuracy, we assume the sensor poses to be known.

We partition the workspace into a finite three-dimensional
voxel grid V . For each voxel v ∈ V a binary random variable
Xv describes whether the voxel is free or occupied, that is,
Xv = 0 or Xv = 1, respectively. We assume these random
variables to be independent, and model information about the
scene reconstruction as a collection of probabilities pv :=
P (Xv = 1) for each voxel v ∈ V . The uncertainty in a
reconstruction X = {Xv | v ∈ V } may be quantified by
calculating its Shannon entropy

H(X) =
∑
v∈V

H(Xv), (1)

where H(Xv) = −pv log2 pv − (1− pv) log2(1− pv) is the
entropy of the binary random variable Xv .

A random variable Ysi depicts the depth image recorded
by sensor i at pose si ∈ Si. We write Ys = {Ysi | si, 1 ≤
i ≤ n} to denote the collection of random variables depict-
ing depth images recorded by all sensors. We assume the
depth images are mutually independent given the workspace

occupancy1, i.e., P (Ys | X) =
n∏
i=1

P (Ysi | X).

Suppose sensor poses s = (si)ni=1 are selected, and depth
images y = (yi)ni=1 are observed. Bayes’ rule is applied to

1One requirement for this assumption is that no sensor can be at a pose
where it occludes the view of another sensor.



find the posterior probability P (X | Ys = y). In this work
we apply probabilistic sensor fusion on occupancy grids [28].
The following two steps are repeated for each depth image
yi. First, the 3D points corresponding to yi are projected
onto the voxel grid through ray casting. Second, for each
voxel v intersected by the rays cast we compute the posterior
probability P (Xv | Ysi = yi) applying the sensor model
P (Ysi | X) in [29]. The results produced by this sensor
model are independent of the processing order of the images.

In the multi-sensor active volumetric reconstruction prob-
lem, we are given a budget of T ≥ 1 sensor poses. Our task is
to design a policy to select T sensor poses that maximizes a
performance measure. Mutual information (MI) [30] is often
used as a performance metric in such information gathering
problems, see, e.g., [31], [32]. We are interested in maximiz-
ing the MI I(X;Ys1 , Ys2 , . . . , YsT ) := I(X;Ys1:T ) between
the reconstruction X and the depth images recorded in the T
sensor poses. A closed-loop policy uses all information from
the preceding (t − 1) sensor poses and the corresponding
depth images to select the tth sensor poses. We denote by
ht = (s1, y1, s2, y2, . . . , st−1, yt−1) the history information
that can be applied to select the tth sensor pose2.

Problem 1 (Multi-sensor active volumetric reconstruction).
Given n ≥ 1 sensors and the sets Si of available poses,
a budget of T ≥ 1 poses, prior information P (X), and
a sensor model P (Ys | X), design a sequence of optimal
closed-loop policies µ∗1:T such that

µ∗1:T = argmax
µ1:T

I(X;Ys1:T )

s.t. st = µt(ht), t = 1, . . . , T

Yst ∼ P (Yst | X), t = 1, . . . , T

ht = (s1, y1, . . . , st−1, yt−1), t = 1, . . . , T.

(2)

We remark that the solution of Problem 1 is centralized,
as the selection policy depends on the shared history of
observations of all sensors.

B. Analysis of closed-loop greedy sensor selection policy

Problem 1 is equivalent to a finite-horizon partially observ-
able Markov decision process problem, which are known to
be computationally intractable [33]. We propose an approx-
imate closed loop greedy policy that maximizes expected
immediate information gain. We show Problem 1 is submod-
ular, which gives performance bounds on the greedy policy.

The closed loop greedy policy selects the next sensor
poses that maximize the expected immediate information
gain. Formally, the tth sensor pose is selected according to

µgt (ht)=argmax
st∈S

I(X;Yst | Ys1=y1,. . ., Yst−1
=yt−1). (3)

Since the MI of any two random variables A and B is
equal to I(A;B) = H(A) − H(A | B) where H(A | B)
is the conditional entropy, the closed loop greedy policy is
equivalent to maximizing H(X ′ | Yst), where X ′ = X |
Ys1=y1,. . ., Yst−1

=yt−1.

2With h1 = ∅.

Submodularity [18] is a diminishing returns property of set
functions that can provide performance bounds on various
greedy selection policies.

Definition 1 (Submodularity). A function f : 2U → R is
submodular if for every A ⊆ B ⊆ U and m ∈ U \ B,
f(A∪{m})− f(A) ≥ f(B ∪{m})− f(B). Additionally, f
is monotone on U if f(A) ≤ f(B).

We view Problem 1 as a maximization of a set function.
The following proposition shows that information gain in
our problem is submodular and monotone. The proof is by
Corollary 4 of [34].

Proposition 1 (Submodularity of information gain [34]). Let
Y = {Ys | s ∈ S}, such that the variables in Y are
independent given X . Then the information gain I(X;A),
where A ⊆ Y , is submodular and monotone on Y .

Next consider the open loop variant of Problem 1, where
we select a sensor pose sequence without observing the depth
images or adapting our subsequent choices based on them.
In other words, we want to find an optimal sequence s∗1:T =
argmax
s1:T

I(X;Ys1:T ) of sensor poses such that the expected

information gain is maximized. The expected information
gain of the closed loop greedy policy (Eq. (3)) is related
to an optimal open loop policy by the following theorem,
whose proof is found in Thm. 5 of [32].

Theorem 1 ([32]). Let I(X;Yµg ) denote the expected value
of the information gain I(X;Ys1:T ) when the sensor poses
s1:T are selected according to the closed loop greedy pol-
icy µgt . Under conditions of Proposition 1, I(X;Yµg ) ≥
1
2I(X;Ys∗1:T ), where I(X;Ys∗1:T ) is the expected information
gain of an optimal open-loop sequence s∗1:T .

Our analysis above shows that our suggested closed loop
greedy policy from Eq. (3) yields at least one half of the
expected information gain of an optimal open loop policy.

IV. SINGLE- AND MULTI-SENSOR PLANNING

We consider two techniques of planning sensor poses to
solve Problem 1. Both techniques approximate the expected
information gain by calculating the volumetric information
(VI) [1] contained in the visible part of the workspace given
a set of sensor poses. In Subsection IV-A we review how
to estimate volumetric information. In Subsection IV-B, we
define an approximate policy that seeks to maximize the
expected information gain of sensor poses by planning them
individually. In Subsection IV-C we introduce a modifica-
tion of the expected information calculation that takes into
account coordination between multiple sensors.

A. Volumetric information of a voxel

We evaluate the VI of a voxel Xv given a sensor pose
si via ray tracing. We denote by Vsi ⊂ V the subset of
voxels in the visible part of the workspace, i.e., those that are
potentially traversed by the rays from sensor i. To evaluate
the total VI, we cast a set of rays from si and accumulate
VI of each voxel along each ray.



We consider two ways of estimating volumetric informa-
tion. The first method is the visible entropy (VE) criterion [4]

VE(Xv, s
i) =

{
H(Xv) if v ∈ Vsi
0 otherwise,

(4)

that directly estimates VI of a voxel by its entropy. Alterna-
tively, we consider the occlusion-aware (OA) criterion [1]

OA(Xv, s
i) =

{
pvis(v)H(Xv) if v ∈ Vsi
0 otherwise,

(5)

where pvis(v) is the probability that voxel v is visible from
the current pose, computed as the product of occupancy
probabilities of all voxels along the ray passing through v.

B. Single-sensor planning

Given a sensor pose si, we approximate its information
gain by

FVE(X, s
i) =

∑
v∈V

VE(Xv, s
i), (6)

or alternatively as FOA which is as above but the sum terms
are replaced with Eq. (5). We then select the sensor pose that
maximizes the information gain, e.g., argmax

si∈Si

FVE(X, s
i), by

a separate maximization for each sensor i.
This approach considers individual sensors in isolation,

without attempting to coordinate their activities. This may
lead to suboptimal behaviour where many sensors are at-
tempting to view the same parts of the workspace.

C. Joint multi-sensor planning

Ideally, the sensor poses s should be selected such that
the visible parts of the workspace from each sensors’ pose
do not overlap. To account for this, we propose to define the
information gain of sensor poses s = (si)

n
i=1 as

GVE(X, s) =
∑
v∈V

max
1≤i≤n

VE(Xv, s
i) (7)

where Fk(Xv, s
i) is the volumetric information for voxel

v for sensor pose si. A greedy policy is obtained by
argmax
s∈S

GVE(X, s). We obtain GOA by replacing the maxi-

mization terms with Eq. (5) with k ∈ {VE,OA}. The joint
information gain score of a set of poses s defined in Eq. (7)
coordinates the activites of the sensors, as each voxel v only
contributes by the maximum volumetric information from it
available to any sensor.

V. OFFLINE EXPERIMENTS

We record sequences of images while moving the two
robot arms shown in Fig. 1. With the recorded images, we
compare NBV planning strategies for scene reconstruction.

Fig. 2. Left: scene 1, IoU 0.25. Right: scene 8, IoU 0.53.

Fig. 3. Partial scene reconstruction of scene 4 using images only from the
right camera.

A. Experimental setup

We set up 8 scenes similar to those shown in Fig. 2. Each
scene contains a subset of YCB objects [35] arranged on a
tabletop, with varying amounts of occlusion. On the opposite
sides of the table, there are two robot arms equipped with
RGBD cameras, see Fig. 1. The robots must plan poses to
view the scene from to reconstruct the tabletop workspace.

To create a reference model to compare the created re-
constructions to, for each scene we first move both robot
arms in a predefined motion sequence while recording RGBD
images. The motion sequence covers the full range of motion
of each robot arm. We apply ElasticFusion [36] to create a
3D mesh of the scene from both robots’ RGBD images. We
align the meshes by the iterative closest point algorithm and
segment the tabletop workspace to obtain a reference model.

For each scene, we quantify the amount of overlap be-
tween the visible voxels for each camera. We calculate
the subsets P i of points in the reference model that are
observable by either of the cameras i = 1, 2. The more points
there are that both of the cameras can observe, the greater the
intersection of P 1 and P 2. The intersection over union (IoU)
value |P 1∩P 2|/|P 1∪P 2| quantifies the amount of overlap.
Fig. 2 shows two scenes with low and high IoU values.
Although the scene shown on the left is more cluttered, its
IoU value is low – due to the occlusion, the potential overlap
volume between the two cameras is reduced. In the scene
shown on the right, the IoU value is high as the cameras
can both potentially view many same areas of the scene. We
number our scenes in increasing order of IoU: scene 1 has
the lowest IoU, and scene 8 the greatest IoU.



We sample a set Si of 10 possible sensor poses for each
sensor. The poses cover the range of motion of each robot
arm, with approximately uniform spatial distances. All the
poses are such that the camera optical axis points towards
the center of the tabletop workspace.

We represent the reconstruction V by an OctoMap [29]
with a resolution of 0.01 meters per voxel. We obtain the
initial information on X by first assigning to each voxel v ∈
V an occupancy probability of pv = 0.5, then we randomly
sample a starting pose s1 and record the corresponding depth
images y1 and fuse them into the map. We plan the remaining
sequence s2:T of sensor poses to visit with a total of T = 6
views. On each scene, we run 20 trials.

We compare joint planning (Subsection IV-C) to two types
of baselines. In the first baseline, we select the sensor poses
by individually maximizing the expected information gain
of each sensor (Subsection IV-B). In the second baseline,
we select sensor poses randomly. For both planning based
methods, we apply either visible entropy (Eq. (4)) or the
occlusion-aware visible entropy (Eq. (5)) to quantify volu-
metric information. In all cases, sensor poses are selected
based on the complete volumetric reconstruction including
all depth images recorded by both sensors up to that time.

B. Evaluation metrics

We evaluate the success of the volumetric reconstruction
process by the voxel grid entropy and the surface coverage.

Given sensor poses s1:t and the recorded depth images
y1:t, the voxel grid entropy at time t is evaluated as H(X |
Y1 = y1, . . . , Yt = yt). A lower entropy indicates a lower
average uncertainty of the reconstruction.

We calculate the surface coverage ct at time t by com-
paring the current reconstruction obtained by comparing the
reconstruction created from the depth images y1:t to the
reference model. For each point in the reference model, we
find the closest point in the current reconstruction. If the
closest point is at a distance of less than 0.01 meters, we
consider the corresponding reference model point observed.
When No,t is the number of observed points at time t, and N
is the total number of points in the reference model, surface
coverage is calculated as ct = No,t/N .

C. Results

Fig. 4 shows the average entropy and its 95% confidence
interval (CI) over all trials in each scene as a function of
the number of views t. The scene numbers and IoU values
are indicated in the respective axis titles. Since the first view
is the same for each method, we show results for t ≥ 2.
The occlusion-aware (OA) and visible entropy (VE) criteria
using joint planning are shown by the solid green and cyan
lines, respectively. The baselines for single-sensor planning
with OA and VE criteria are shown by the dashed red and
blue lines, respectively. The solid black line indicates random
view selection. The CIs are indicated by vertical bars.

There are few significant differences between the methods.
In scene 1, joint planning with VE reaches significantly lower

entropy than the other methods. In scene 4, joint planning
with OA performs significantly better than other methods.

In some cases (Scenes 4 and 8), the entropy for some
methods increases. This is due to error in the relative poses
of the cameras. Due to the error, when depth images are
integrated into the reconstruction, voxels previously assumed
to be free with high likelihood are now observed to be
occupied, leading to an increase in entropy. Voxels likely to
be occupied are observed free, likewise increasing entropy.

As each scene is different, the range of entropy values also
differs. As the scenes contain many voxels that can not be
observed, e.g., voxels inside objects, entropy remains high
even after many views.

Fig. 5 shows the average surface coverage and its 95%
CI over all trials in each scene as a function of the number
of views t. The colors for the different methods are as in
Fig. 4. In four of eight scenes, joint planning has the highest
final surface coverage: VE in scenes 1,6, and 8, and OA in
scene 4. Sometimes, joint planning also reaches significantly
greater surface coverage than other methods (scene 1, VE,
steps 4 and 5; scene 4, OA, step 3; scene 5, OA, step 2;
scene 8, VE, steps 4 and 5).

Reasons for the performance differences between OA and
VE can be attributed to the characteristics of the scenes.
A partial reconstruction of scene 4 using images from the
right camera only is depicted in Fig. 3. The area behind the
red cracker box and blue coffee can is only visible to the
left camera. As the OA criterion considers the occlusion, it
creates a plan to observe this area using the left camera,
imaging other parts of the scene with the right camera. This
leads to significantly better performance after three views,
as seen from Fig. 5. The difference shrinks at subsequent
steps as other methods also decide to observe the occluded
area with the left camera. Scene 8, shown in Fig. 2 right, has
very little occlusion. Thus, the VE strategy that maximizes
visible entropy performs well as seen in Fig. 5.

We hypothesized that higher IoU values indicating larger
overlap between the cameras’ visible voxel sets would lead
to an advantage for joint planning. However, we do not find
conclusive differences between joint and individual planning
in the scenes we examined. Joint planning most of the time
outperforms individual planning with the same criteria (VE
or OA), with the exception of scenes 6 and 7. Of all the scene
we examined, scene 8 has the largest IoU score of 0.53. We
conjecture that in scenes where there is a higher overlap (as
measured by IoU) and overall more views are required for
reconstruction, joint planning is more advantageous.

Fig. 5 shows that 70% surface coverage is reached in most
cases after just two views. This partly explains the good
performance of the random baseline, as there are not many
views remaining where a significant amount of additional
information could be obtained. In more cluttered scenes, such
as scene 1 (Fig. 2 left), NBV planning has an advantage over
random view selection. Here, by NBV planning 85% surface
coverage is reached after four views, where the random
strategy needs five or more views on average.
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Fig. 4. Average reconstruction entropy as function of number of views t. The vertical bars show 95% confidence intervals. Our proposed joint planning
variants are indicated by Gk , while Fk plan views independently for each sensor i. With k we indicate occlusion-aware (OA) [1] or visible entropy
(VE) [4].
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Fig. 5. Average surface coverage as function of number of views t. The vertical bars show 95% confidence intervals. Our proposed joint planning variants
are indicated by Gk , while Fk plan views independently for each sensor i. With k we indicate occlusion-aware (OA) [1] or visible entropy (VE) [4].



VI. DISCUSSION AND FUTURE WORK

We propose to solve centralized multi-sensor scene re-
construction as a volumetric information gain maximization
problem. The problem is submodular, which leads to ap-
proximation guarantees for the closed loop greedy policy.
We applied a ray-tracing based method for approximation
of the information gain, and proposed a modification for
joint planning that encourages coordination between multiple
sensors.

We provided some preliminary experimental results to
illustrate application of our approach to multi-sensor scene
reconstruction. However, we did not find conclusive differ-
ences between joint and individual planning in the scenes
examined. Future work will expand the experimental evalua-
tion in two major ways. Firstly, we will examine larger scenes
where several views are required to obtain good surface
coverage. We expect this to generally benefit planning-
based approaches compared to randomly selecting views.
Secondly, we will investigate more closely the hypothesis
that a high overlap as measured by the IoU value leads to
better performance for jointly planning the sensor views. This
can be done by purposefully designing scenes with a high
overlap between the sensors’ fields of views.

In this work, we applied submodularity to justify our use
of the approximate greedy policy. Another potential direction
for future work is to consider how submodularity can be
more effectively taken advantage of in solving the problem.

Finally, the relaxation of the centralization assumption
can be considered. If observation histories cannot be shared
between the robots, or can only be shared with a delay of one
or multiple time steps, the centralized solution proposed here
is not applicable. In such cases, planning a joint policy over
multiple time steps that can be executed decentrally without
implicit information sharing is required.
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